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STEFAN PROBLEM IN THE THEORETICAL MODEL OF THE THERMAL INTERACTION 

BETWEEN A MOLTEN HEAT-LIBERATING MATERIAL AND FINITE WALLS 

G. N. Vlasichev, G. B. Usynin, 
and Yu. I. Anoshkin 

UDC 621.039.588 

An approximate analytical solution of the one-dimensional Stefan problem is 
obtained for a single finite wall with constant heat fluxes at the boundaries. 
The conjugate problem for a system of molten heat-liberating material with 
two walls is solved by the finite-difference method. 

In investigating the safe operating conditions of fast reactors, it is necessary to ana- 
lyze the thermal interaction between the molten heat-liberating fuel and the casing walls 
of the malfunctioning and neighboring heat-liberating piles. Since this interaction is ac- 
companied by melting of the casing wall and motion of its front, the analysis involves solv- 
ing the problem of phase transition, called the Stefan problem. Accurate analytical solu- 
tions of the phase-transition problem are only known for individual cases of a semiinfinite 
media [I, 2]. An approximate analytical solution of the one-dimensional Stefan problem may 
be obtained for a single wall of finite thickness with constant heat fluxes at the bound- 
aries (qsl > qs2)- The solution is found by an integral balance method using the Lebenson 
method. 

Integrating the one-dimensional heat-conduction equation 

c(x, t) OT(x, t) 0 ~(x,  t) OT(x, t) ( 1 )  
Ot Ox Ox 

within the limits of the liquid and solid phases of the wall, and using the Stefan condition 

it is found that 

I 00T x=u<O+0-- OuSt) o r  + A s - -  -- Rm - " (2)  
- -  ~,z ~ x=v ( t ) -o  Ot ' 

v(t) 6 

Rm auat(t) _ q~l-  q,2 - -  cz j" aT (x,at t) ax - e8 .f" aT (X,at t). Ox (3) 
X~(t) y(t) 

Taking accoun t  of  the  downward r u n o f f  of  the  mol ten  wa i l  m a t e r i a l  under i t s  own we igh t ,  
it is assumed that the coordinate of the molten-layer boundary is determined by the expres- 
sion Xi(t) = by(t), where b is some constant (0 < b <_ i). 
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TABLE I. Comparison of the Results of Numerical and 
Accurate Analytical Solution for a Single Wall with 
a Constant Flux at One Boundary and a Zero Flux at the 
Other 

y/8 ] 0,42 

(numerical I 2,55 
/, sec solution) [ 

t, sec (from Eq. (5))[ 2,56 

0,83 

5,05 

5,04 

0,93 

5,65 

5,62 
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Fig. I. Diagram and initial temper- 
ature state of the system before 

N contact of molten fuel with the cas- 
ing wall of the malfunctioning fuel 
assembly: I) fuel; II) casing wall 
of the malfunctioning fuel assembly; 
III) casing wall of the adjacent 
fuel assembly; IV) heat carrier of 
the adjacent fuel assembly, T, ~ 

8 
~,.-x F--x 

By analogy with the first Lebenson method, in which the temperature distribution of the 
corresponding steady state is taken [i], in the present case the temperature distribution is 
written in the form 

T (x, t) = {Tin + (q /~O [Y (t) - -  xl, X~ (0 <~ x <~ Y (t), (4)  
T,, .  - -  ( q / X ~ )  Ix  - -  y (t)], v (t) ~< x ~ 6. 

Setting y(O) = O, the following relation is obtained between the phase-boundary position 
y(t) and the time t 

t - 1 ! R~ u (0 + (i - b ) / ( 0  + q~ r 2 ~ -  y(01 y (t) l .  ( s )  
1--q~2/q~l ( q~l 2az qsl 2a~ J 

From Eq. (5 ) ,  t he  t ime  f o r  t he  whole w a l l  to  me l t  i s  

t~-- 1 - -qJq~ 2a~ q~l 
With conservation of the molten layer (b = 0) and/or nonzero heat transfer from the ex- 

ternal boundary (0 < qs2 < qsl), the melting time t 6 must increase considerably with in- 
crease in wall thickness; the thermal diffusivity of the liquid and solid phases of the wall 
material is significant here. With a small wall thickness or total removal of the molten 
material (b = i), the melting time is determined basically by the latent heat of fusion and 
the heat~flux values at the boundaries. 

In the general case of interaction between molten fuel and the casing wall of a malfunc- 
tioning fuel-assembly surrounded by fuel assemblies with normal heat-extraction conditions, 
a conjugate heat-transfer problem must be solved. Suppose that, in a system consisting of 
a layer of molten heat-liberating fuel and two heat-transmitting walls of the fuel-assembly 
casing separated by a gap with heat carrier, in the case of steady conditions, contact of the 
fuel layer with the casing of the malfunctioning fuel assembly occurs at the initial moment. 
The diagram and initial state of the system are shown in Fig. i. Suppose that the fuel 
layer is static, with adiabatic conditions on the side opposite the casing wall. Assuming no 
lateral and axial heat transfer, this system may be regarded as one-dimensional. It is ob- 
vious that satisfaction of this condition entails sufficient extent of the fuel layer along 
the wall. 

Heat transfer inside each of the three theoretical regions of the given physical approxi- 
mation is described by nonsteady heat-conduction Eq. (i), taking account of qVF for the 
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Fig. 2. Comparison of the results of approximate analytical and numerical 
solution for a single wall with constant fluxes at the boundaries, with 
retention of the molten wall layer: i) qs2 = 0; 2) qs2 = 0.5qsl; a) numeri- 
cal solution; b) approximate analytical solution. 

Fig. 3. Motion of the phase interface in the wall of the emergency casing 
of a fuel assembly from contact with the molten fuel to melting and the 
subsequent establishment of the steady state. 

layer of heat-liberating fuel. The heat transfer from the fuel to the casing wall is des- 
cribed by a boundary condition of the fourth kind [i]. At the boundary of the casing,wall 
of the adjacent fuel assembly with the circulating heat carrier, the condition of convective 
heat transfer is assumed. The heat conduction in the gap between the casing walls is cal- 
culated as the heat conduction of the heat carrier enclosed there and, after evaporation of 
the latter, as the heat conduction of its vapor. At the beginning of phase transition, the 
condition in Eq. (2) at the phase boundary must be considered. 

The system of three differential equations with conditions at the boundaries is solved 
numerically by the finite-difference method. The finite-difference scheme for the heat-con- 
duction boundary problem with discontinuous coefficients may be obtained by an integrointer- 
polational method [2, 3]. An absolutely stable purely implicit scheme is used here [3] 

1 c F l  (T{ +' - T~) = Ti+ l 

1 [X{+I , , r i+ l  ~i+I (T{+I ,~-i+lu ( 7 )  
- -  ~i+1/1 + �9 - -  "~i+l ~ F '  h{ +' T F ' )  . - 

where 

�9 ' /+1 . 
T{ +l  = r(xi ,  t i+0 ;  h~ +~ = (h~ ~-I + h i+l ) /2 ,  

~i+ 
i = ~ (X i - - I /2 ,  t1+1); C{ +1 ~---C(Xi, t j + l ) ;  

I qVF in the fuel layer, 
qv ~ {0 in the casing walls. 

To retain the order of accuracy when a moving discontinuity appears, a nonuniform spatial 
grid is used; this grid is chosen at each time step so that one of its points coincides with 
the point of discontinuity, the phase interface y(t), i.e., one point of the grid is floating 
and moves with the phase boundary until it approaches a specified extreme position. The time 
step is taken to be variable, varying when the displacement of the phase boundary in the 
given step ~j+m moves toward the given maximum or minimum value. In problems with phase tran- 
sitions, a scheme with a variable time step and a nonuniform spatial grid with floating points 
allows the required accuracy to be obtained with fewer spatial grid points than in schemes 
using a uniform spatial grid, such as a scheme with a variable time step and displacement of 
the phase boundary by one spatial grid point at a time or a scheme with a fixed time step and 
fractional spatial steps in determining the position of the phase interface [4]. 

The conditions at theboundaries of the regions are written in the form 

r i  +'  = ~ T W  + ~,,  T~ +'  = ~ r i ~ , +  ~,, (8) 

where 
h~ +~ i*~ 

•  1; ~ j = ~ q ~ i  ; 
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1 B , r l + l  
z 2 - -  - - ;  ~h = , e , ~ o ;  

I + B  I + B  

B = hi+i,~i+ 1 , iO = ~ in the case of ideal contact with the 
..e,2 i'Ve,2 neighboring region (with subscript e); 

B = (h~+l/~,iN+l)o~.,, iO = 1 in the absence of ideal contact. 

The matching condition at the phase boundary in Eq. (2) is written in the form 

Ti+I . ,vj+l NU2 = ~ra~Ny2"+'l "~- ~m, 

where 

hi+ [ ; i R,. ( / +  NU2-{-I ~LUI T N u I - 1 - - T N y I _ _  __yi) I 
X m = 1,  ~ m  ~ ,~I+'--"--Y--- [ i ,i;i+1 " 

",Vu2+I h,vyl �9 J 

(9) 

A combination of fitting and iterative methods is used to solve the nonlinear system in 
Eqs. (7)-(9) [3]. At each time step, the fitting procedure is repeated several times, un- 
til the required accuracy of the temperature distribution obtained in the system is achieved. 
The next displacement of the phase boundary &yj+1, as in one of the schemes of [4], is frac- 
tional relative to the spatial grid steps, and is taken to be &yJ in the first iteration 
(ky = i). If after the.~tting procedure the difference between the temperature at the point 
on the ~hase boundary T~ + ,Ky and the melting point T M falls outside the required accuracy, 
h 3+l,ky+1 . ~ 2 ten Ay in the n~xt iteration is calculated from the expression 

i ] ] mi+l,hy ) A9 i+i'h~+l -- Ti+l ~ y l  TNyl--I - -  TNgl ~i+1,~ Tm - -  ~Ng2+I ( 1 0 )  
I ] - - -  ~Ny2+'! ~]+I ,by " 

~m  :~Nyl IrNy2+l 

This algorithm for numerical solution of the conjugate Stefan problem is realized in the 
MDUCT2 computational program in FORTRAN-IV for an EC-type computer. 

To test the quality of the numerical method, its results are compared with the results 
of analytical solution of Eq. (15). In the numerical solution, ten points of the spatial 
grid are taken, and then the algorithm (with squeezing of the spatial grid at the external 
boundary) allows the calculation to be continued up to the melting of 93% of the wall thick- 
ness. Table 1 gives the results for the particular case when the approximate analytical 
solution of Eq. (5) is accurate: with complete removal of the molten wall material (b = i) 
and zero heat extraction from the external surface (qs= = 0). The other parameters of the 
problem are as follows: qsl = 156 W/cm 2, R M = 2100 J/cm 3, a L = 0.018 cm2/sec, a s = 0.055 
cm2/sec; this corresponds approximately to the conditions of reactors with sodium coolant 
[5]. It is evident from Table 1 that the numerical solution coincides with the analytical 
solution to two significant figures. In Fig. 2, curves of y(t) are shown for two values 
of the flux from the surface of the solid wall layer (qs2 = 0 and qs2 = 0.5 qsl) in the case 
of complete retention of the molten layer. It is evident that the approximate analytical 
solution gives a somewhat lower melting rate of the wall. The difference in values of y(t) 
here is no more than 20%. 

The MDUCT2 program is used for calculations of the transient thermal interaction of 
molten fuel with the steel casing walls of the malfunctioning and neighboring fuel assemblies 
for the initial state in Fig. i. The parameters required for the calculations are taken from 
[5]. In Fig. 3, results are given for the case of retention of the molten wall material 
in the contact zone. It follows from the results obtained that melting of the casing wall 
of the malfunctioning fuel assembly begins at initial contact with the molten fuel. After 
1.3 sec, the heat carrier boils up, filling the gap between the walls. The casing wall of 
the malfunctioning fuel assembly melts more rapidly on account of the deterioration in heat 
transfer through the gap, and is completely molten 6.8 sec after the initial contact. Then 
it is assumed in the model that, after complete melting of the first wall, direct contact 
sets in between the molten material and the casing wall of the neighboring fuel assembly. 
As a result, the wall material of the casing wall of the malfunctioning fuel assembly again 
solidifies over more than half of the wall thickness. The temperature distribution becomes 
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steady; the casing wall of the malfunctioning fuel assembly is only partially in the molten 
state here, and the casing wall of the neighboring fuel assembly remains undamaged. Calcula- 
tion for the case of runoff of molten wall material from the contact zone shows that the in- 
ternal wall melts somewhat more rapidly: in 4.6 sec from the moment of contact. However, 
in both cases, if normal heat extraction from the casing wall of the neighboring fuel assem- 
bly is maintained, this wall remains undamaged. 

NOTATION 

x, coordinate; t, time; T, temperature; ~, thermal conductivity; c, specific heat of unit 
volume; a, thermal diffusivity; Rm, latent heat of fusion; Tm, melting point; 6, thickness 
of casing wall; XI, coordinate of the molten-layer boundary; y, coordinate of the phase boun- 
dary; qsl, heat flux to the internal (left-hand) boundary; qs2, heat flux from the external 
(right-hand) boundary; e2, heat-transfer coefficient from the external boundary; ts, time of 
melting of wall; qVF, heat liberation in the fuel layer; ~, time step; h, spatial step of the 
grid. Indices: s liquid phase; s, solid phase; i, number of the spatial grid point; j, 
number of the time step; Nvl, Nv2, numbers of the spatial grid points at the phase interface 
in the j-th and (j + l)-th-steps, respectively; N, number of spatial grid points; ky, number 
of iteration. 
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TWO-MODE MODEL OF FLOW IN A PLASMOTRON CHANNEL 

N. F. Aleshin and A. F. Bublievskii UDC 533.961 

The characteristics of an electric arc in a turbulent gas flow are calculated 
on the basis of the concept of laminar flow in the arc zone. 

The methods of calculating electrical arcs in a cylindrical channel which are known in 
the literature are usually based on the assumption that the flow conditions, which depend 
on the parameters of the external gas flow blown through the arc, are the same (either lami- 
nar or turbulent) over the whole channel cross section. At the same time, taking account 
of the specific properties of the electric arc allows the flow in the plasmotron channel 
to be represented in the form of central laminar flow and outer turbulent flow in many cases. 

Estimates for various gases show that, at moderate Re (up to 10s), calculated from the 
input parameters, and at sufficiently high temperatures in the central region of the flow 
(% 15,000 K or more), the mean turbulent thermal conductivity over the channel cross section 
is approximately an order of magnitude lower than the molecular thermal conductivity, while 
the corresponding viscosity values are comparable with one another. Similar results were 
obtained in [I], where it was indicated that the heat transfer in the axial of a plasmotron 
channel may be regarded as laminar. 

Note also the possibility of decrease in the temperature pulsations in a plasma arc on 
account of radiant heat transfer between turbulent eddies and rapid "deexcitation" of the 
highest-temperature formations [2]. The result is that turbulent heat transfer is negli- 
gibly small, and there is practically no pulsational component of the heat flux for opti- 
cally dense media with very intense radiation. 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 5, pp. 830-835, No- 
vember, 1986. Original article submitted October 2, 1985. 
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